Package: ldhmm 0.6.1
ldhmm: Hidden Markov Model for Financial Time-Series Based on Lambda Distribution
Hidden Markov Model (HMM) based on symmetric lambda distribution framework is implemented for the study of return time-series in the financial market. Major features in the S&P500 index, such as regime identification, volatility clustering, and anti-correlation between return and volatility, can be extracted from HMM cleanly. Univariate symmetric lambda distribution is essentially a location-scale family of exponential power distribution. Such distribution is suitable for describing highly leptokurtic time series obtained from the financial market. It provides a theoretically solid foundation to explore such data where the normal distribution is not adequate. The HMM implementation follows closely the book: "Hidden Markov Models for Time Series", by Zucchini, MacDonald, Langrock (2016).
Authors:
ldhmm_0.6.1.tar.gz
ldhmm_0.6.1.zip(r-4.5)ldhmm_0.6.1.zip(r-4.4)ldhmm_0.6.1.zip(r-4.3)
ldhmm_0.6.1.tgz(r-4.4-any)ldhmm_0.6.1.tgz(r-4.3-any)
ldhmm_0.6.1.tar.gz(r-4.5-noble)ldhmm_0.6.1.tar.gz(r-4.4-noble)
ldhmm_0.6.1.tgz(r-4.4-emscripten)ldhmm_0.6.1.tgz(r-4.3-emscripten)
ldhmm.pdf |ldhmm.html✨
ldhmm/json (API)
NEWS
# Install 'ldhmm' in R: |
install.packages('ldhmm', repos = c('https://slihn.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 12 months agofrom:a013108005. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 17 2024 |
R-4.5-win | OK | Nov 17 2024 |
R-4.5-linux | OK | Nov 17 2024 |
R-4.4-win | OK | Nov 17 2024 |
R-4.4-mac | OK | Nov 17 2024 |
R-4.3-win | OK | Nov 17 2024 |
R-4.3-mac | OK | Nov 17 2024 |
Exports:ecldecld.ccdfecld.cdfecld.kurtecld.kurtosisecld.meanecld.pdfecld.sdecld.skewnessecld.varldhmmldhmm.calc_stats_from_obsldhmm.conditional_probldhmm.decode_stats_historyldhmm.decodingldhmm.df2tsldhmm.drop_outliersldhmm.forecast_probldhmm.forecast_stateldhmm.forecast_volatilityldhmm.fred_dataldhmm.gamma_initldhmm.get_dataldhmm.get_data.arrldhmm.get_data.tsldhmm.ld_statsldhmm.log_backwardldhmm.log_forwardldhmm.mleldhmm.mllkldhmm.n2wldhmm.plot_spx_vix_obsldhmm.pseudo_residualsldhmm.read_csv_by_symbolldhmm.read_sample_objectldhmm.simulate_abs_acfldhmm.simulate_state_transitionldhmm.smaldhmm.state_ldldhmm.state_pdfldhmm.ts_abs_acfldhmm.ts_log_rtnldhmm.viterbildhmm.w2n
Dependencies:clicolorspacefansifarverggplot2gluegnormgtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmomentsmunsellnlmenloptrnumDerivoptimxpillarpkgconfigpracmaR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithrxtsyamlzoo